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Abstract 

Genesis will be NASA's first robotic sample return  mission  to  return  to the Earth.  The 
purpose of this mission is to collect  solar wind samples for  two years in an LI halo 
orbit and return them  to the Utah Test  and  Training  Range  (UTTR)  for  mid-air 
retrieval by helicopters. This requires the Genesis  spacecraft to make an  excursion 
into the region  around L2. This transfer  between L1 and LP requires no deterministic 
maneuvers  and is provided by the  existence of so-called  heteroclinic  cycles  defined 
below.  The Genesis  trajectory  was  designed with the  knowledge of the  conjectured 
existence of these heteroclinic  cycles.  We now have  provided  the first semi-analytic 
construction of such  cycles.  The  heteroclinic  cycle  provides  several  interesting 
potential  applications for  future  missions. First, it provides  a  rapid  low-energy 
dynamical  channel  between L1 and LP such as used by the  Genesis  mission. Second, 
it provides  a  dynamical  mechanism  for the  temporary  capture of objects  around  a 
planet  without  propulsion. Third, a thorough  understanding of this dynamics is 
essential for an  optimal  design of any  constellations to study the  magnetosphere 
region.  Lastly,  an  understanding of the resonance  structure of this dynamical  regime 
may  provide  new strategies for  low energy  planetary captures at  Mars  or  Europa. 

1 .  Introduction 

The key feature of the  Genesis trajectory (see Fig. 1) is the Return  Trajectory  which makes a 3 
million km excursion  between L1 and L2 in order  to  reach UTTR (the Utah Test and Training 
Range) during daylight  hours. The extraordinary thing about this 5 month  excursion is that it 
requires no  deterministic  maneuvers! This transfer is called a heteroclinic  connection  between the 
L1 and L2 regions in dynamical systems theory. 

Figure 1. The  Genesis  Trajectory in Sun-Earth  Rotating  Frame. 

There is, in fact,  a  vast  theory  about  heteroclinic  dynamics  which  among  other things is the 
generator of deterministic chaos in a dynamical  system. Our recent  work  [Koon et al, 19991 
provides a  precise  theory of  how heteroclinic  dynamics arise in the  context of the  planar  circular 
RTBP (restricted  three-body  problem). In this paper, we  apply this theory  to  explain  how the 
Genesis Return Trajectory  works. This provides  the  beginnings of a  systematic  approach to the 
design  and  generation of this type of trajectories. In the  not  too  distant future, automation of this 
process will be  possible  based on this approach. The eventual  goal is for the on  board 
autonomous  navigation of this type of low-energy  Earth  sample  return  missions. But in fact, as we 
will show, this dynamics  affects a much greater class of new  mission concepts. 
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To  motivate the discussion  and  to  provide  an  independent  example  from  nature,  we  examine  the 
orbit of the comet,  Oterma, to see how this dynamics  works in nature  both  to  develop and to verify 
our  theory. This is an important  theme in our  work, perhaps in science and  engineering in general, 
to  learn  from  nature because it seems that  nature  always  has  the  best  solution. Whatever we can 
glean  from  natural  phenomena will contribute  immeasurably  to the development of new trajectory 
and  mission concepts. In particular,  the  understanding of the structure of the heteroclinic  and 
homoclinic  orbits has given us new insights into the  transport  mechanisms within the  Solar 
System  and  for space trajectory  design. 

Next,  we  explain the key theorem  from  Koon et al  [1999]  which we use to  explain the "Temporary 
Capture  Mechanism" in the  astrodynamics  context. It seems that  the  phase space region  between 
L1 and L2 is full of dynamical  channels like a complex system of tunnels  or  wormholes. These 
channels  exists throughout  the  Solar  System in a  vast network  connecting  all the planets  and their 
satellites (see Lo and Ross [1997,  19981).  Together,  they  provide  the low energy  transport  which 
may be  used  for  new  mission concepts. We  apply it to a new class of missions  which we call  "The 
Petit Grand  Tour".  The  Petit  Grand  Tour  combines  the  Temporary  Capture  Mechanism with the 
concept of the Interplanetary  Network of Dynamical  Channels  to  provide a low-energy  mission  to 
tour  the  moons of Jupiter  (or  Saturn) in a prescribed sequence by design. 

2. Heteroclinic  Connections  and  Cycles 

The goal of the  Genesis Mission is to  return  to UTTR all  of the  solar wind samples collected  over 
two years in an L, halo  orbit (see Lo et  al [1998]). The mid-air  retrieval of the  ballistic SRC 
(Sample  Return  Capsule) by helicopters  requires  that  the Entry must occur during daylight. But 
the  natural  dynamics of L, halo  orbit  requires a night-side  return. In order  to  achieve  the  day-side 
Entry within a  reasonable AV budget, an  excursion  into  the L2 region is necessary. This added 
about  two  months  extra  to  the  Return Phase. 

A heteroclinic  connection, ~ also called a heteroclinic  trajectory  (orbit), is an  asymptotic  trajectory 
which connects two  periodic  orbits  which  we denote by a and B for this discussion. In the  event A 
and B are the same periodic  orbit, H is called a homoclinic  orbit. His a  theoretical  construct of 
great  importance  both in theory  and in practical  applications.  We  examine some of the key 
features of these orbits. It takes  ginfinite time to wind off  from a to transfer to 9. Once  near the 
vicinity of B, it takes g a n  infinite  time  to wind onto 3. They  were  studied  intensely by Poincare 
(Barrow-Green  [1991])  and  was  the  key  to his discovery of chaos in the 3 body  problem. 
Practically, of course, we are never  able  to  produce  the  real H just like we are never able to 
compute  the  real  periodic  orbits of any  nonlinear  system.  However,  what  we are able to  compute 
are neighboring  trajectories, H's, which "shadow" !M to  any  desired  accuracy (within machine 
accuracy)  nearly  everywhere of importance  to  the  particular  problem  at  hand. 

Now a slight diversion  on  our  notation  which  we will keep  to a minimum. We denote  a  heteroclinic 
orbit  between a and B by gx8 and a heteroclinic  orbit  between B and a by Hm. In particular, a 
homoclinic  orbit of a is denoted by HM. We distinguish the  theoretical  orbit, f i  and its numerical 
shadow, H, by the  script  and  block  fonts  respectively. 

Returning to  our  main discussion, when  we  have a heteroclinic  orbit  between a and B and a 
heteroclinic  orbit  between B and A, the two  orbits { Hxz , H&} is called a heteroclinic  cycle. In 
particular,  homoclinic  orbits are already  cycles.  The  importance of cycles  both  theoretically  and 
practically will be discussed shortly  below. And, they are very  important  indeed. 

Of course,  the  existence of heteroclinic  connections was generally  known  to the  halo  mission 
community.  Typically when integrating  an L1 halo  orbit  for  too  long, it escapes the  halo  orbit  and 
returns  towards  Earth  and  continues  to wind around L2. The WIND Mission  was the first to use 
this heteroclinic  behavior  between L1 and L2 (Sharer et al,  [1995]).  Howell  and  Barden  [1994] 
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made  a  more  formal study of heteroclinic  connections  and  were  able  to find a  free  connection 
between a halo  orbit  and a  lissajous  orbit using numerical search. 

Koon, Lo, Marsden, Ross [1999]  studied the problem of PCRTBP (Planar  Circular  Restricted 
Three Body  Problem)  and used the more systematic  and  standard  method of Poincare  sections 
from  dynamical systems theory  to  produce  heteroclinic  orbits  between two Lyapunov  orbits 
(periodic  orbits  around L1 and L2 in the  plane). Although the  method of Poincare  section is also 
numerical in nature, it reduces the problem by 1 dimension  thereby  making  the  problem  more 
tractable  and bringing the problem one step closer  to  automation.  Futhermore,  there is a 
substantial  theory and results  on  Poincare  sections  from  dynamical systems theory  which  provide 
additional  knowledge  and insight into the  specifics of the dynamics.  This  knowledge  and insight 
provide the foundation  for  new  mission concepts and  for  optimization of current  mission concepts 
discussed in this paper. 

We  conclude this section by emphasizing  the  importance of these seemingly  esoteric  theoretical 
constructs,  the H and  even H orbits.  Their  importance in astrodynamics are two  fold: (1.) 
Computation, (2.) New mission concepts. Their  importance  to  computation is perhaps  best 
illustrated by the  process used  to  compute  the  Genesis  halo  orbit  which  we  shall denote by A. We 
start  the  process with a  theoretical  model  lissajous  orbit, A, specified by amplitudes  and  phase 
angles. We  produce  an  analytic  approximation, AI using a 3rd order  analytic  expansion. Next we 
produce  a  differentially  corrected  lissajous  orbit, A2, from A,. Finally,  starting with A2, we apply the 
various  mission  constraints  and  differentially  correct  for  the  Genesis  halo  orbit, A. To summarize, 
the  theoretical  model  orbit, A, is the  starting  point  from  which  practical  orbits  may  be constructed 
via the  continuation process using a series of numerical  computations. In the same way, the 
Genesis Earth  Return  orbit  was  computed using heteroclinic  orbits as initial  models.  Therefore, 
advances in the  theory  and  computation of these orbits are essential to the simplification and 
eventual  automation of this complex  process of continuation. It is remarkable  to think how 
Poincare  was  able  to see all of these complex issues and  actually  perform  continuation  calculation 
of orbits  without the benefit of modern  computers.  The  discussion of their  importance  to  new 
mission concepts is essentially  the  body of the  rest of this paper. 

2.1 The  Three Body Problem 

We start with the PCRTBP (Planar  Circular  Restricted Three Body  Problem) as our first model of 
the  mission design space, the  equations of motion  for  which in rotating  frame with normalized 
coordinates are: 

x” - 2 y’ = a,, y” + 2x’ = s l y  , (1) 

where  subscripts  denote  partial  differentiation in the  variable  and  apostrophes  after  the  variables 
are time derivatives.  The  variables rs, rJ, are the  distances from (x,y) to the S u n  and Jupiter 
respectively. 

The  coordinates of the equations use standard PCRTBP conventions:  the s u m  of the mass of  the 
S u n  and the Planet is normalized  to 1 with the mass of the Planet set to p; the  distance  between 
the S u n  and  the  Planet is normalized  to 1; and  the  angular  velocity of the Planet  around  the S u n  is 
normalized  to 1 .  Hence in this model,  the  Planet is moving  around the S u n  in a circular  orbit with 
period 27c. The  rotating  coordinates,  following  standard  astrodynamic  conventions, is defined as 
follows: the origin is set at  the  Sun-Planet  barycenter;  the  x-axis is defined by the  Sun-Planet line 
with the  Planet on the positive  x-axis;  the  xy-plane is the plane of the orbit of the  Planet  around 
the Sun .  
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Although the PCRTBP has  3 collinear  libration  points  which are unstable in the cases of interest  to 
mission design, we will examine  only L1 and L2 in this paper.  These  equations are autonomous 
and  can  be put into  Hamiltonian  form with 2 degrees of freedom. It has  an  energy  integral  called 
the Jacobi  constant which  provides 3 dimensional  energy surfaces: 

c = -( + y’2) + 2O(x,y) . (2) 

The power of dynamical systems theory is that it is able to provide  additional structures within the 
energy  surface and  characterize  the  different  regimes of motions. 

2.2 Examples  from Nature: The Motion of Comets 

The  Jupiter family of comets exhibit  many puzzling phenomena  the  most  interesting of which  to 
mission design is the Temporary  Capture  Phenomenon. Lo and Ross [1977]  proposed  another 
explanation  based  on  observations of the stable and  unstable  manifolds of L1 and L2. Figure 2a. 
shows the stable manifolds as dashed  curves,  the  unstable  manifolds as solid curves for L1 and L2 
of the  Sun-Jupiter system in rotating  frame. The S u n  is labeled S ,  Jupiter is labeled J. In Figure 
2b.,  the orbit of the  comet  Oterma is overlayed in color.  The  orange  segment is in the Exterior 
Region,  outside of Jupiter’s  orbit;  the  blue  segment is in the Interior  Region,  inside of Jupiter’s 
orbit.  Notice  how well Oterma’s  orbit fits with that of the  manifolds of L, and Lp. Lo and Ross 
argued  that this suggest that  the  comet  orbit is under  the  control of the  invariant  manifold  structure 
of the Lagrange  points.  The term invariant  manifold structure is a  catch-all  phrase for the  entire 
structure of periodic  and  quasiperiodic  orbits  around  the  Lagrange  points  and  all of their 
associated invariant  manifolds  such as the  stable  and  unstable  manifolds of the periodic  orbits. 
Recall a manifold is simply a mathematical  term  for  higher  dimensional surfaces. An invariant 
manifold in dynamical systems theory is a  special  manifold  consisting of orbits;  hence  a  point  on 
the  invariant  manifold will forever  remain  on  the  manifold  under the flow  of the  equations of 
motion.  The  Lagrange  points are examples of O-dimenisonal  invariant  manifolds. A periodic  orbit 
is an  exmaple of a  l-dimensional  invariant  manifold.  The stable manifold of a Lyapunov  orbit is an 
example of a 2-dimensional  manifold. Its energy  surface in the PCRTBP is an example of a 3- 
dimensional  invariant  manifold. 

Figure 2a.  The  Stable  and  Unstable  Manifold of Jupiter’s L1 and L2. 
2b.  The  Orbit of Oterma  Overlaying  the  Manifolds of Jupiter’s L1 and L2. 

In Figure 3a. the orbit of comet  Gehrels3 is overlaid  against  the  manifolds of Jupiter’s L1 and L2. In 
Figure 3b., a  close-up in the Jupiter  Region  shows  how  Gehrels3 goes into a halo  orbit  for one 
revolution  around L2 before  capturing  into  Jupiter  orbit  for  several  revolutions.  Once again,  the 
manifolds  match  closely with the  comet  orbit.  Furthermore,  the  Temporary  Capture of the comet 
by Jupiter suggests the  possibilities of low-energy  capture  for  interplanetary  missions. 

Figure 3a. The  Orbit of Gehrels3 Overlaying the Manifolds of Jupiter’s L1 and L2. 
3b. The Orbit of Gehrels 3 in the  Jupiter  Region  Showing  Temporary  Captures  and  Halo 

Orbits. 

Based  on  the  invariant  manifold  approach suggested by Lo and Ross [1997], Koon et al  [1999] 
provides a  systematic  and  mathematically  rigorous  explanation of this dynamics. In addition  to a 
more  complete  global  qualitative  picture of the  dynamics, it has computational and predictive 
capabilities. It provides  an  algorithm  based  on  standard  Poincare  Section  methods  for the 
computation of heteroclinic  orbits. It provides the rudiments  for  the  calculation of transport 
coefficients  based  on  heteroclinic  lobe  dynamics  theory.  Previous  mission  design  work using 
heteroclinic  dynamics were based on  ad  hoc  numerical search and  exploration. But the new 
computation  tools of  Koon et  al  [1999] enables  the mission  designer  to  construct  heteroclinic 
trajectories in a  systematic  fashion  instead of a blind search. Much research  and  development 
work  remains  before this process may  be fully automated. 
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2.3 Orbit Classes Near L1 and L2 

W e  now  review the work  of Conley  [1968],  Moser  [1973],  and  McGehee[l969]  which  provides  an 
essential  characterization of the  orbital  structure  near L1 and L2. McGehee also proved the 
existence of homoclinic  orbits in t he  Interior  Region. Llibre, Martinez,  and  Simo  [1985]  computed 
homoclinic  orbits of L1 in the Interior  Region. They further  extended  McGehee’s results and 
proved a  theorem using symbolic  dynamics  for  orbital  motions in the Interior  Region. The key 
result in Koon et al [1999] is the  completion of this picture with the computation of heteroclinic 
cycles in the  Jupiter  Region  between L1 and L2. We will refer  to  the  various  regions by the 
following short  hand: S for  the  Interior  Region  which contains  the Sun ,  J for the  Jupiter  Region 
which contains  the  planet, X for the Exterior  Region. 

Figure 4 below  schematically  summarizes  the key results of Conley,  Moser,  and  McGehee.  For 
energy  value just about  that of L2, the Hill Region is projection of the  energy  surface from the 
phase space onto  the  configuration space, i.e.  the  xy-plane. This is represented by the white 
space in Figure 4a.  The  grey  region is the  energetically  forbidden. In other  words, with the given 
energy,  our  spacecraft  can only  explore  the white region.  More  energy is required  to enter the grey 
Forbidden  Region. 

Figure 4a. The Hills Region  Connecting the Interior  Region,  the  Capture  Region,  and the Exterior 
Region. 

4b.  Expanded  View of the L2 Region with 4 Major Classes of Orbits: 
Black:  Periodic Orbits, Green: Asymptotic  Orbits 
Red: Transit Orbits,  Blue:  Non-Transit Orbits 

Figure 4b blows up the L2 Region  to  indicate  the  exitence  four  different classes of orbits.  The first 
class is a single  periodic  orbit with the  given  energy, the planar  Lyapunov  orbit  around L2. The 
second class represented by a Green squiggle is an  asymptotic  orbit winding onto the  periodic 
orbit. This is an orbit  on the  stable manifold of the Lyapunov  orbit.  Similarly,  although  not shown, 
are orbits  which wind off the  Lyapunov  orbit  to  form the unstable  manifold. The third class, 
represented by red  orbits, are transit  orbits  which pass through the Jupiter  Region  between the S 
and X Regions.  Lastly, the fourth class in blue consists of orbits  which are trapped in the S and X 
Regions. 

Let us examine  the  stable  and  unstable manifold of a Lyapunov  orbit as shown in Figure 5 below. 
Of course, only a very  small  portion of the  manifolds are plotted.  Notice the X-pattern  formed by 
the  manifolds,  reminiscent of the  X-pattern of the  manifolds of the  Lagrange  points. It is precisely 
in this sense that we say the  manifolds of the  Lagange  points are “genetic”, in that  they 
characterize  the shapes and  the  dynamics of things to come when  more  complexity such as 
periodic  orbits  and  their  manifolds are introduced. Thus we study the  simple  1-dimensional 
manifolds of L1 and L2 to  gain some understanding of the  nature of the  complex  dynamics of the 
full invariant  manifold structure of the  region. 

Figure 5.  The  Stable  and  Unstable  Manifold of a Lyapunov  Orbit. 

Notice  that the 2-dimensional  tubes of the  manifolds of the Lyapunov  orbits are separatrices in the 
3-dimensional energy surface! By this we  mean the tubes separate different  regions of motion 
within the energy  surface.  Referring  back to the schematic  diagram, Figure 4b, we notice  that the 
Red Transit  Orbits pass through  the  oval of the Lyapunov  orbit. This is no accident, but an 
essential  feature of the  dynamics on the energy  surface. Lo and Ross [1997] had referred  to L1 
and L2 as gate  keepers on the  trajectories  since the Jupiter  comets must transit  between the X 
and S regions  through  the J region  and  always seem to pass by L1 and L2. Chodas  and  Yeomans 
[1996]  noticed  that  the  comet  Shoemaker-Levy9 passed by L2 before it’s crash into Jupiter. These 
tubes are the only means of transit  between  the  different  regions in the energy  surface! In fact, all 
this was  already  known  to  Conley  and  McGehee. 
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2.4 The  Homoclinic-Heteroclinic  Chain 

By putting all of these results  together, we are able  construct a complete  chain as show in Figure 
6: start with a homoclinic  cycle  (Blue) in the Interior  Region,  go  to a heteroclinic  cycle in the 
Capture  Region ( ~ a g ~ ~ ~ a ) ,  and  finally  end with a homoclinic  cycle (Orange) in the Exterior 
Region.  The  pair of Lyapunov  orbits  around L1 and L2 which generated this chain are in black. The 
existence of this chain  has  many  important  implications  for  mathematics,  astronomy,  and 
astrodynamics. Let us take a moment  to see heuristically  exactly  what this chain means. W e  have 
essentially  produced  a series of asymptotic  trajectories  that  connect the S ,  J, X regions. So what? 
Since these theoretical  orbits  take  infinite  time  to  complete  their  cycles, of what use are they? 

Figure 6a. Jupiter's  Homoclinic-Heteroclinic  Chain. 
6b. The  Lyapunov Orbits (Black)  and the Heteroclinic  Cycle (Magenta). 

Well,  recall  that  large  body of theory  and  results in dynamical systems theory  relating  to 
heteroclinic  orbits  mentioned  earlier?  Here is where  we cash in our  chips  after hitting the jack  pot. 
It turns out  one of the sources of deterministic chaos in a dynamical system is precisely the 
existence of homoclinic  and  heteroclinic  cycles. This was  known  to  Poincare  and gave him 
enormous  difficulties.  Basically,  when these cycles  exist, it implies that the stable and  unstable 
manifolds  have infinite number of intersections  creating  what is known as the 
homoclinic/heteroclinic  tangle. This is truly a mess. The existence of this tangle  means that very 
random  transitions between the S ,  J, X set of regions  can  occur using the  chain as the  template 
for the  transition. In other  words,  a  comet  could  orbit  the S u n  in the X Region  for  many years,  then 
suddenly changes its orbit  to  the S Region. Of course, to  do this, it must transit  through  the J 
Region  where it might get  caught by Jupiter  for a couple of orbits. It might also be  caught by L1 or 
L2 doing a few revolutions of a halo  orbit.  Then it leaves via the L1 Region  to enter the S Region 
and  orbit the S u n .  This, of course, is exactly  the  itinerary of Gehrels3,  Oterma,  and  a  host of other 
comets. This dynamics is completely  explained by the  tangle  associated  to this chain. 

But actually  an  even  more  precise  result is proved in Koon  et  al [1999] using symbolic  dynamics, a 
simple technique in dynamical systems theory.  The  basic  idea is as follows.  We  want  to 
characterize the  dynamics by following it in space. But, the  detail  trajectory is too  complicated. 
Suppose we divide the space into 3 regions  such as S ,  J, X in Figure 7. Let's just track  when the 
trajectory is in each of the 3 regions. Thus a trajectory is characterized by an  infinite sequence (..., 
X, J, S ,  J, X, ...) indicating  the  "itinerary" of the  trajectory.  Certain sequences such as (..., X, S ,  
...) are impossible because as we  know  to  go  from X to S ,  the  trajectory must pass through J. We 
call the set of  all possible  trajectories, Admissible Trajectories.  The  main  theorem in Koon et al 
[1999] states that  given  any  admissible  itinerary, (..., X, J, S ,  J, X, ...), there exists a natural  orbit 
whose  whereabouts  matches this itinerary.  Here  naturality  implies  no AV is required,  a free energy 
transfer all the way! In fact, we can  even  specify the number of revolutions the  trajectory  makes 
around the Sun ,  Jupiter, L1 or L2! And this for  an  infinite sequence going  back  and  forth  between 
the S and X Regions! 

Figure 7. The  Symbolic  Dynamics of Transitions  Between  the S ,  J, X Regions. 

2.5 The Numerical Construction of Orbits  with Prescribed Itinerary 

At this point,  skeptics will no  doubt  recall  that  mathematical  existence  proofs are worth  very  little 
for real  engineering  problems. This observation is quite  mistaken.  We use the  Genesis  trajectory 
design as an  example. When  we first studied the  Genesis problem,  what  guided us in our  mission 
design was the knowledge  that  there is heteroclinic  behavior  between  the L1 or L2 regions. T h u s  
the  knowledge of the  conjectured  existence of these cycles  provided the necessary insight for us 
to search in the  design space to find the  desired  solution.  Furthermore,  our  knowledge of 
heteroclinic  orbit  theory,  though  much less  complete  than it is today,  provided  the  basic  algorithms 

6 



for the  numerical search which  produced  the  Genesis  trajectory. W e  knew you had to compute 
periodic  orbits  at L1 or L2 and  produce a  transfer  between  them as a first step to find the Return 
Trajectory  for Genesis.  Once  a heteroclinic-like  orbit is constructed,  perhaps studded with Av's, 
this orbit  provided  the  starting  point  for  our  differential  correction process which  continued the orbit 
to  eventually  produce  the 6 m/s AV mission! 

Hence  existence  proofs  and  theory  do  provide  invaluable,  necessary insight to solve very  practical 
engineering  problem  even  when  the  computational  machinery associated with the theory has not 
been developed. 

A second point is the  fact  that  our  theory  actually  provides  a  completely  systematic  method  for  the 
numerical  construction of orbits with arbitrary  prescribed  itinerary! Figure 8 below  provides some 
details  on  how the heteroclinic  orbits  may  be  found. 

Suppose we wish to  compute a heteroclinic  orbit  from L2 to L1. We start with two  periodic  orbits of 
the same energy  around L1 or L2 depicted in black in Figure 2a. We  compute the unstable 
manifold (red) of the L2 periodic  orbit;  we  compute  the  stable  manifold (green) of the L1 periodic 
orbit.  We find the intersection  between  the  two  manifolds  at a convenient  location  such as the 
solid  black line through  Jupiter in Figure 2a. The  solid  black  line  actually represents  a plane in 
phase space, say the {y, y'} - plane.  When we intersect  the  stable  manifold with this plane, we 
expect to get a  distored  green  circle;  similarly,  the  unstable  manifold will intersect this plane in a 
distorted  red  circle. This is exactly  what is shown in Figure 8b. This is called  the  Poincare  Section, 
or the  Poincare Cut. It has  reduced  our  manifold (surface) intersection  problem by 1 dimension 
into a curve  intersection  problem. This is a much simpler problem. W e  see that there are two 
intersections. Taking one of these, integrating this state backwards  and  forwards  towards  the 
periodic  orbits  around L1 and L2 produces  the  heteroclinic  orbit in Figure 8c. 

Figure 8a. The  Intersection of Stable  and  Unstable  Manifolds in the  J  Region. 
8b. The  Poincare  Section of the Manifolds  and  Their  Intersections. 
8c. The Heteroclinic Orbit Generated from the Intersection. 

Notice,  what  we  have  constructed  above is the symbolic sequence (X; J, S) .  The semi-colon 
divides the past from the  present. We came from the X Region;  we are currently  at the J Region 
and  we will transfer to the S Region. In Figure 9, we  show the (X; J, S )  sequence graphically. 
Figure 9a. depicts the manifold tubes as in Figure 8a. Figure 9b. magnifies the intersection of the 
manifolds in the  Poincare  map.  Recall  that  the  invariant  manifold tubes separate the transit orbits 
from the  non-transit  orbits. In other  words, as we state earlier,  all  orbits  entering the J Region  from 
X at this energy level, must enter through  the  unstable  manifold tube of the Lyapunov  orbit! 
Hence,  the red  circular  curve in the  Poincare  Section  shows  all  orbits of the sequence (X; J). 
Similarly,  the  green  circular  curve  captures  all  orbits  leaving  the  J  region  to  enter  the S region  at 
this energy  level,  the (J; S )  sequence. Their  intersection is exactly  the (X; J, S) sequence, 
highlighted in yellow. And since  hamiltonian systems  preserve area, by comparing  the area of 
these curves  and  intersections in the  appropriate  coordinates, we can  actually  compute the 
transition  probability  from one region of phase space to another!  For a little  more  complexity, in 
Figure 10 we  show  an  orbit with the itinerary (X, J; S ,  J, X). 

Figure 9a. The Intersection of the  Stable  and  Unstable  Manifolds of Periodic Orbits. 
9b.  The  Poincare  Section of the Manifold  Intersection.  The  Yellow  Region  Depicts the (X; 

J, S )  Sequence. 
Figure loa. The (X, J; S ,  J, X) Orbit. 

lob. The  Details of the (X, J; S ,  J, X) Orbit in the  J  Region. 

These observations  merely  scratch  the  surface of the transition  probability  calculus  which is 
possible using this technique. Thus far  from  an esoteric  mathematical  curiosity,  symbolic 
dynamics  can  be  a very useful  computational tool when  viewed in this context. This remarkable 
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theory is known as "lobe  dynamics" in dynamical systems theory. It was  developed  about 10 years 
ago and is currently  an  active area of research. 

3. Applications to the  Genesis  Mission 

In Figure 1 1  we  computed the  chain  for  two  Lyapunov  orbits with the  Jacobi  energy of the  Genesis 
halo  orbit.  Although the  resulting heteroclinic  orbit in the  blow-up  Figure 1 1  b has  an  extra loop 
around the Earth,  the  general  characteristics of the Return Orbit shadows the heteroclinic  orbit in 
the gross  details. As indicated in Bell, Lo, & Wilson  [1999],  the  influence of the Moon is crucial  to 
the Genesis  trajectory.  Perhaps  the role of the Moon is to pull up the Magenta  orbit closer to the 
Moon's  orbit  to  produce  the  actual  Earth  Return Orbit. Also, since  the  Genesis orbit is fully 3- 
dimensional,  our  2-dimensional  theory  may be missing important  elements of the dynamics. 

Figure 11 a. The  HomoclinicMeteroclinic  Chain  for  the Genesis Orbit. 
1 1  b. Detail  Blow-Up of the Earth  Region of the Genesis  Chain. 

One of the findings of  Bell et  al  [1999] is the surprising robustness of the Genesis  trajectory. Even 
when critical  maneuvers  were  missed,  the  trajectoy is still able to submit to  correction  and  return 
to UTTR within the 450 m/s  total AV budget. In fact, given the now  understood  chaotic  nature of 
this orbit,  how is it possible to compute  any  orbits  at  all starting from guesses using pieces of the 
invariant  manifolds? Why should  the  orbits  seemingly  cling  to  the surface of the  invariant 
manifolds?  What  keeps  the  orbit  shadowing  the  manifolds  despite its sensitivity? This is explained 
heuristically by the  lobe  dynamics in a phenomenon  technically  called  "stickiness". The invariant 
manifolds are sticky; this means  orbits  close  to  the  invariant  manifolds  tend to remain there for a 
long  period of time. This is because in the  infinite  homoclinic/heteroclinic  tangle, when two 
manifolds  intersect,  their  intersection creates pockets  called  lobes.  Orbits in these lobes are 
trapped  and  remain in the lobe structure which is close to the  invariant  manifolds  even  after a long 
time.  Hence it is the lobe  dynamics  which creates this stickiness;  the  stickiness in turn, produces 
the  unexpected  stability seen in the  Genesis orbit as well as in ordinary  comet  orbits. It explains 
why the  comets  change orbits  only  intermittently.  Once it gets near  a  resonance, it tends to stay 
there for sometime.  Then  inexplicably, it transitions to another  resonance,  perhaps  changing  the 
X, J,  or S regions. This intermittency is explained by the  lobe  dynamics.  The  transition  calculus 
provided by the  lobe  dynamics will permit us someday to compute the probabilities  to  characterize 
the  intermittent  behavior. 

The  fact that chaotic  orbits  like  to  stick  around  the resonances is illustrated by Figure 12, the 
mean  motion resonance diagram  created  from a  Poincare  Section of Jupiter's L, manifolds in the 
S Region.  Each  dot in the  diagram  represents  one  orbit of the L1 manifold  around the Sun .  An 
animated  version  would  show  how  the  dots  tend to circulate  around  the  resonances for  long 
periods of time, indicating  stickiness.  Then jumping to another  resonance. Eventually, the swiss 
cheese plot is generated. The  semimajor  axis  has  jumped  between  2 to 5 AU over the time 
interval of this plot  which is about 1 million years.  The  relation  between resonance and  invariant 
manifolds is a  deep one, not  entirely  understood.  For  instance, it is well known  that  Jupiter comets 
tend to transition  from X to S Region using the  2:3  resonance in the X Region, to the 3:2 
resonance in the S Region. An (n:m) resonance  means  the  comet  orbits  the S u n  n times while 
Jupiter  orbits  the S u n  m times during approximately  the same period of time. As  Figure 12 shows, 
the  3:2  resonance is indeed  prominent in the  Jupiter  resonance  diagram.  More  details  regarding 
the  resonance transition  and  heteroclinic  orbits is given in Koon  et  al [1999]. 

Figure 12.  The  Resonance  Characteristics of the  Jupiter L1 Manifold. 

While the nominal  trajectory  for Genesis seems robust  and  malleable, finding the initial orbit  was 
extremely  difficult  and  time  consuming. This suggests that given a sufficiently severe change in 
the orbit due to  contingency  problems, finding a new  Return  Trajectory will be very difficult.  Our 
experience working  on this trajectory  design  for  the  past  three  years  indicates that when this 
trajectory goes wrong, it is very  hard to fix. Unlike conventional  halo  orbit  missions  where the 
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specific  halo  orbit is of  no concern, so long as the  spacecraft  remains in the general  vicinity of the 
Lagrange  point, the mission  objectives  can  be  achieved.  Genesis  require  the  return of the solar 
wind samples precisely to UTTR in daylight. The combination of the UTTR target with daylight 
entry severely constrains the design  problem.  For  example, the  role of the moon in the Genesis 
orbit  design  was  completely  unplanned (see Bell et al [1999]). The Moon, in fact, was purposely 
avoided to eliminating  the  difficulty of phasing with the Moon. In the end, it could  not be avoided. 

A deeper understanding of the  dynamics  behind  the Genesis Return  Trajectory  could  greatly 
alleviate this problem.  Clearly,  Bell  et  al [1999] and this paper  shows  that a thorough  investigation 
of the  theory of heteroclinic  orbits with lunar  perturbations in the Sun-Earth  system is critical. But 
of even  greater  importance is to  have  the  proper tools at  hand  which are responsive  to  the 
demands of the many  potential  contingency  situations  that  may arise. The development of the 
proposed  JPL's LTool  (Libration  Point  Mission  Design  Tool) is a  respose to these challenges. 
With a deeper understanding of the  fundamental  dynamics,  automation of the  design  process 
may  be  possible since  the invariant  manifold structures  and  the  various  computation  algorithm 
associated with them are well defined,  at  least  theoretically. 

It is a  general rule of thumb for these highly nonlinear  trajectory  missions,  and  perhaps  for  all 
missions,  that  the role of contingency  planning is critical  to  the success of the  mission.  Invariably, 
something  always goes wrong in a mission. And what goes wrong is never what  you expect. In 
order to prepare for these challenges,  the  best bet is to study the orbit  design space in order  to 
find out  what  options are available.  Then  having a  good,  flexible  design tool  to be able to  quickly 
implement these options will greatly enhance  the mission  and  reduce  the risk of failure. 

4. Applications to Other Missions 

Many  potential  applications of the  dynamics of the  chain are possible. The Genesis Mission is a 
prime  example of an  application of the  heteroclinic  connection  between L, and Lp. The  homoclinic 
orbits are very  similar to the  SIRTF-type  heliocentric  orbits.  Clearly  missions in the Earth  Region 
between L1 and L2, those going to the Moon,  or  the  extended  Magnetosphere  can  all  benefit  from 
using this dynamics.  We  leave these mission  applications  to  future papers.  Instead, we  want to 
introduce the  "Petit  Grand  Tour"  concept to complete this paper. 

The Petit Grand  Tour is a tour of the Jovian  satellites. But  unlike previous flyby tours,  the  concept 
here is to linger  at  each  satellite in a temporary  captured  orbit  for a  prescribed  number of orbits 
before  moving  on to the next  satellite.  The  temporary  capture  orbits  can  be  constructed using the 
heteroclinic  cycles  described  above. But the  intersatellite  transfers  requires  a  different 
mechanism. Figure 13 plots  the L1 and L2 manifolds of the  Galilean  satellites,  showing 
intersections  between  the L1 manifold of the  outer  satellite with the L2 manifold of the  inner 
satellite.  Note, this intersection is in configuration space only. A AV may  be necessary to  effect  the 
transfer from the L, manifold of one  satellite to the L2 manifold of the next satellite. This network of 
dynamical channels  was  discovered by Lo and Ross [1997]. Using this dynamical  network to leap 
from satellite to satellite,  and using the  heteroclinic  cycles to effect  low-energy  temporary captures 
at a satellite,  the  Petit  Grand  Tour  concept is thereby  complete. 

Figure 13. The  Network of Interconnecting  Dynamical  Channels Generate by the Invariant 
Manifolds L1 and L2 of the Galilean  Satellites of Jupiter. 

In Figure 14 we  illustrate a  segment of the  Petit  Grand  Tour of Jovian  moons. W e  prescribe 1 
orbit  around  Ganymede,  leave  Ganymede  via  the L1 unstable  manifolds,  transfer  to the Europa L2 
stable manifolds using a AV, then  almost  get  into a Lyapunov  orbit  around  Europa's L2, and finally 
capture into  Europa  orbit  for 4 orbits.  The  trajectory is integrated using the  planar  restricted 
bicircular  problem (PRBCP). In this model,  both  Europa  and  Ganymede  orbit  Jupiter in circular 
orbits with no  gravitational effects on one  another.  The AV savings is a little  more  than  half  that 
required for a Hohmann  transfer  between  Ganymede  and  Europa,  although  the  trajectory  was  not 
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optimized in any way. This preliminary  design is illustrative of the  types of mission  which as 
possible using these techniques. 

Figure 14a. One Orbit  Around  Ganymede in Rotating  Coordinates. 
14b.  The  Transfer from  Ganymede to Europa Via the  Invariant  Manifold  Intersections.. 
14c. Temporary  Capture by Europa  into 4 Orbits. 

5. Future Work 

The  work presented in this paper  represents  an initial  foray  into  chaotic  dynamics of the 
homoclinic/heteroclinic  chain in the 3 body  problem.  There are many  directions  where this work 
may be continued. We mention a few of the most  important  problems and applications in 
astrodynamics. 

Extension of the 2D heteroclinic  cycle  to 3 D  is the most  important  problem  for  astrodynamic 
applications  since halo  orbits  and  not  Lyapunov  orbits are the  ones of most interest to  missions. 
The  second problem is the systematic study of Earth-Return/Collision  orbits. The Genesis orbit, 
for example, is an  Earth  collision  orbit  not  all  that  different  from the  spectacular  Shoemaker-Levy9 
orbit. The third problem is the  interactions with the Moon.  Here  we speak of the  interactions of the 
Sun-Earth  Lagrange  point  dynamics with that of the Earth-Moon  Lagrange  point  dynamics.  This 
interaction  provided the low energy  capture which  rescued  the  Hitten  mission.  Similarly,  the  recent 
Hughes satellite  rescue  mission  also  used this dynamics.  The  fourth  problem, a more  technical 
problem, is to combine  dynamical systems theory with optimal  control  methods. It is hoped  that 
the many  difficulties  which  fact  optimal  control  problems  may be alleviated if the  dynamics of the 
problems  were  taken  more  into  consideration.  For  example, we are currently  working  on  targeting 
the  stable manifold  to  compute  an  optimal  transfer  into a halo  orbit.  Lastly,  perhaps the most 
important  problem in this field  currently, is the  development of good  software  tools to perform the 
analysis. 
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Figure 1. The  Genesis  Trajectory  in Sun-Earth Rotating  Frame. 
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Figure  2a.  The  Stable (dashed curve)  and  Unstable (solid curve)  Manifold  of  Jupiter's L, and L2. 
2b.  The  Orbit  of  Oterma  Overlaying  the  Manifolds of Jupiter's LI and L2. 
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a. b. 

Figure  3a.  The  Orbit of Gehrels3  Overlaying  the  Manfiolds of Jupiter’s L1 and b. 
3b. The  Orbit of Gehrels3 in Jupiter  Region  Showing  Temporary  Captures  and  a  Halo  Orbit. 

4.5 0.5, 
i’(nondimensional kits, rotatmg fide) x (nondimensional units, rotating frame) 

a.  b. 

Figure  4a.  The Hill’s Region  Connecting  the  Interior (S), Jupiter (J), and  Exterior (X) Regions. 
4b.  The  Orbit of Gehrels3 in Jupiter  Region  Showing  Temporary  Captures  and  a  Halo  Orbit. 
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Figure 5. The  Stable (Green)  and  Unstable (Red) Manifolds of a Lyapunov Orbit. 

a. b. 
Figure 6a. Jupiter's  Homoclinic  (Orange,  Blue)  and  Heteroclinic  (Magenta)  Chain. 

6b. The Lyapunov Orbits  (Black)  and  the  Heteroclinic  Cycle  (Magenta). 
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Figure 

Figure  8a.  The  Intersection  of  Stable  and  Unstable  Manifolds in the J Region. 
8b.  The  Poincare  Section  of  the  Manifolds  and  Their  Intersections. 
8c. The  Heteroclinic  Orbit  Generated from the  Intersection. 
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Figure  9a.  The  Intersection  of  the  Stable  and  Unstable  Manifolds  of  Periodic  Orbits. 
9b.  Poincare  Section  of  the  Manifold  Intersection.  Yellow  Region  Depicts  the (X; J, S) Sequence. 
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Figure  1Oa.  The (X, J; S, J, X) Orbit. 

~~ 

x (rotating frame) 
a. b. 

lob. Details  of  the (X, J; S, J, X) Orbit  in  the J Region. 
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x (AU, Sun-Earth Rotating Frame) x (AU. Sun-Earth Rotating Frame) 

a. b. 
Figure 1 la. The  Homoclinic/Heteroclinic  Chain for the  Genesis  Orbit. 

1 lb. Details of the Earth Region of the  Genesis  Chain.  Genesis  Orbit  in  Black,  Heteroclinic  Orbit 
in Magenta. 

Figure 12. The  Resonance  Characteristics  of  the  Jupiter LI Manifolds. 
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L1 (green)  and L, (Mack) manifolds for lo, Europa,  Ganymede,  and Callisto 

Semimajor Axis (Jupiter Radii) 
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Figure  13.  The  Network of Interconnecting  Dynamical  Channels  Generated  by  the 
Invariant  Manifolds of L, and Lz of  the  Jupiter Galilean Satellites. 
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Figure  14a.  One  Orbit  Around  Ganymede  in  Jupiter-Ganymede  Rotating  Coordinates. 
14b.  The  Transfer fiom Ganymede to Europa  via  the  Invariant  Manifold  Intersections. 
14c.  Temporary  Capture  by  Europa  for 4 Orbits. 
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